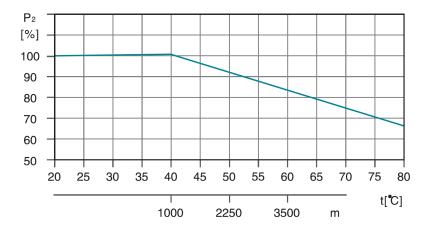


Tableau des performances LVS(R)


Gamme de produits LVS(R)

Modèles	LVS(R)1	LVS(R)2	LVS(R)3	LVS(R)4	LVS(R)5	LVS(R)10	LVS(R)15	LVR(S)20	LVS(R)32	LVS(R)45	LVS(R)64	LVS(R)90	LVS(R)120	LVS(R)150	LVS(R)200
Débit nominal (m³/h)	1	2	3	4	5	10	15	20	32	45	64	90	120	150	200
Plage de débit (m³/h)	0,7-2,4	1,0-3,5	1,2-4,5	1,5-8	2,5-8,5	5-13	8-23	10,5-29	15-40	22-58	30-85	45-120	60-150	80-180	100-240
Pression max (bar)	22	23	24	21	24	22	23	25	28	33	22	20	16	16	16
Puissance moteur (kW)	0,37-2,2	0,37-3	0,37-3	0,37-4	0,37-4	1,1-7,5	1,1-15	1,1-18,5	1,5-30	3-45	4-45	5,5-45	11-75	11-75	18,5-110
Rendement pompe max	45%	46%	55%	59%	60%	65%	70%	72%	78%	79%	80%	81%	74%	73%	79%
Raccord's LVR															
Bride ovale	1"	1"	1"	1"1/4	1"1/4	1000	i sta	100	1000	1	1 10700	107(0)	1000	1	-
Bride DIN	DN25	DN25	DN25	DN32	DN32	DN40	DN50	DN50	DN65	DN80	DN100	DN100	DN125	DN125	DN150
Raccord's LVS															
Bride DIN	DN32	DN32	DN32	DN32	DN32	DN40	DN50	DN50	DN65	DN80	DN100	DN100	DN125	DN125	DN150
Raccord clamp	Ø42	Ø42	Ø42	Ø42	Ø42	9-9	(-)	(-)	-	-	-	(-)	(-0)	1 1-	1 (*
Raccord taraudé	1"1/4	1"1/4	1"1/4	1"1/4	1"1/4	10.50	0.70	1270	0.70	1.5	1.50	1.70	1.50		1 12

Influence de la température ambiante

Une température ambiante de plus de 40°C ou une installation à une altitude supérieure à 1000 mètres au-dessus du niveau de la mer nécessite un moteur sur-dimensionné. A cause d'une faible densité de l'air et d'un mauvais refroidissement, la puissance P2 en sortie décroit, comme le montre le tableau ci-dessous:

Par exemple, lorsque la pompe est installée à une altitude de 3500 mètres, P2 va décroître de 88%. Et quand la température ambiante est de 70°C, P2 va décroître de 78%.

Pression maximale de service de la pompe

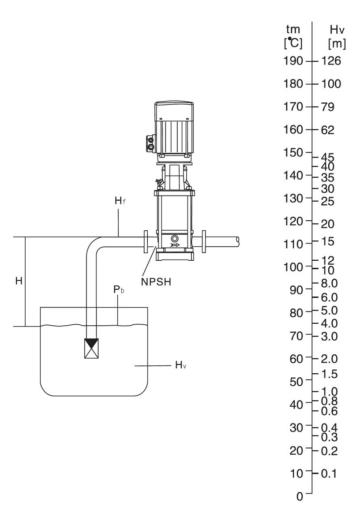
Le tableau ci-dessous indique les pressions maximales au refoulement des différentes pompes LVS(R). La pression à l'aspiration de la pompe + la pression de consigne doivent toujours être inférieures à la pression maximale de service de la pompe. Si la pression maximale de service est dépassée, cela peut endommager les roulements moteur et réduire la durée de vie de la garniture mécanique.

Mand Manda manna	Pression de service maximale (bars)						
Modèles de pompe	LVR LVR brides ovales brides DIN		LVS				
LVS(R) 1	16	25	25				
LVS(R) 2	16	25	25				
LVS(R) 3	16	25	25				
LVS(R) 4	16	25	25				
LVS(R) 5	16	25	25				
LVS(R) 10	25						
LVS(R) 15	25						
LVS(R) 20	25						
LVS(R) 32-1-1 à 32-7		16					
LVS(R) 32-8-2 à 32-14		30					
LVS(R) 45-1-1 à 45-5		16					
LVS(R) 45-6-2 à 45-11		30					
LVS(R) 45-12-2 à 45-13-2		33					
LVS(R) 64-1-1 à 64-5	16						
LVS(R) 64-6-2 à 64-8-1	30						
LVS(R) 90-1-1 à 90-4	16						
LVS(R) 90-5-2 à 90-6	30						
LVS(R) 120-1 à 120-7	20						
LVS(R) 150-1-1 à 150-6	20						
LVS(R) 200-1-D à 200-4		20					

Le calcul du NPSH est fortement recommandé dans les situations suivantes:

- la température du liquide est élevée
- le débit est nettement supérieur au débit nominal de la pompe
- grande hauteur d'aspiration
- grande longueur de tuyauterie à l'aspiration
- caractéristiques de la canalisation à l'aspiration mauvaises (faible DN, coudes, ...)

•


Pour éviter la cavitation, assurez-vous qu'il y a une pression minimale à l'aspiration de la pompe. La hauteur maximale d'aspiration H peut être calculée comme suit:

 $H = Pb \times 10.2 - NPSH^R - Hf - Hv - Hs$

- Pb: pression atmosphérique en bar (utiliser par défaut 1 bar)
- NPSH^R: Net Positive Suction Head requis (pour cette valeur, se référer à la courbe fournie pour nos pompes)
- Hf: perte de charges de la conduite (exprimée en mètres)
- Hv: tension de vapeur du fluide (pour cette valeur, se référer à la courbe de tensions de vapeur du fluide et de sa température)
- Hs: marge de sécurité (valeur par défaut 0,5 m)

Si H calculé est positif, la pompe peut fonctionner avec une hauteur d'aspiration de H mètres

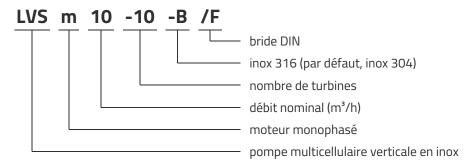
Si H calculé est négatif, la pompe devra être mise en charge avec une hauteur de H mètres

Note: afin d'éviter la cavitation, il ne faut pas sélectionner une pompe dont le point de fonctionnement est trop à droite sur la courbe du NPSH. Toujours vérifier la valeur du NPSH de la pompe au débit le plus élevé possible.

LVS10 Pompe multicellulaire verticale en inox en ligne

Application

- Transfert de liquides à faible viscosité, non-inflammable et non-explosif, ne contenant pas de particules solides ou de fibres.
 Ces liquides ne doivent pas attaquer chimiquement les matériaux de la pompe.
- Alimentation en eau de bâtiments de grande hauteur, stations de pompage, surpression en eau potable
- Stations de lavage, circulation d'eau de chauffage, circulation d'eau de climatisation, systèmes de traitement d'eau
- Systèmes d'ultra-filtration, d'osmose inverse, de distillation, piscines municipales
- Irrigation: aspersion, goutte-à-goutte
- Industrie alimentaire
- Systèmes de lutte contre les incendies

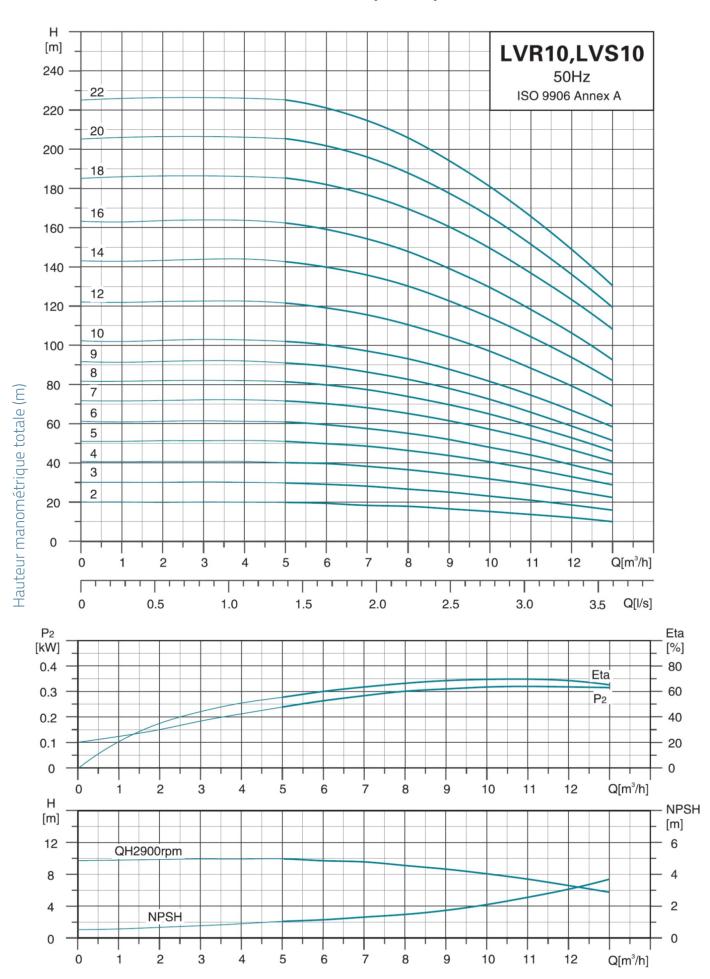

Pompe

- Température de liquide: -20°C à +120°C
- Débit nominal: 10 m³/h
- Pression maximale: 22 bars
- pH compris entre 4 et 10

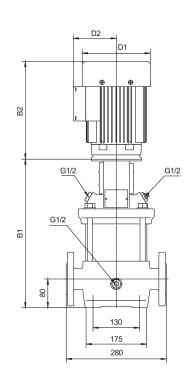
Moteur

- Moteur IE3
- Classe de protection: IP55
- Température ambiante maximale: +40°

Codes d'identification

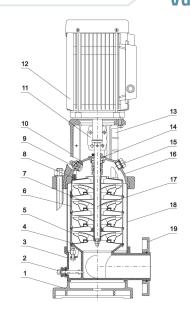


	Données techniques							
		Q (m³/h)	2	4	6	8	10	12
MODEL	kW	Q (I/min)	33	67	100	133	167	200
LVSm10-2/F	0.75		20	20	19	18	15	12
LVSm10-3/F	1.1		30	30	29	26	23	18
LVSm10-4/F	1.5		40	40	40	36	32	26
LVSm10-5/F	2.2		51	51	50	46	40	33
LVSm10-6/F	2.2		61	61	59	55	48	39
LVSm10-7/F	3		72	72	70	65	56	46
LVSm10-8/F	3		82	82	80	74	64	53
LVSm10-9/F	3		92	92	89	82	70	59
LVS10-2/F	0.75		20	20	19	18	15	12
LVS10-3/F	1.1		30	30	29	26	23	18
LVS10-4/F	1.5		40	40	40	36	32	26
LVS10-5/F	2.2		51	51	50	46	40	33
LVS10-6/F	2.2		61	61	59	55	48	39
LVS10-7/F	3		72	72	70	65	56	46
LVS10-8/F	3		82	82	80	74	64	53
LVS10-9/F	3		92	92	89	82	70	59
LVS10-10/F	4		102	102	100	93	80	66
LVS10-12/F	4		122	122	119	110	95	79
LVS10-14/F	5.5		144	144	140	130	113	94
LVS10-16/F	5.5		163	163	159	148	128	106
LVS10-18/F	7.5		186	186	182	169	147	123
LVS10-20/F	7.5		206	204	201	188	164	136
LVS10-22/F	7.5		226	226	221	206	178	147



Performances hydrauliques

Dimensions



MODEL	B1	B1+B2	D1	D2	poids
LVSm10-2/F	351	619	150	125	40.6
LVSm10-3/F	381	649	150	125	41.1
LVSm10-4/F	427	745	164	127	48.5
LVSm10-5/F	457	775	164	127	51.9
LVSm10-6/F	487	805	164	127	52.5
LVSm10-7/F	522	862	186	120	60.6
LVSm10-8/F	552	892	186	120	62.1
LVSm10-9/F	582	922	186	120	63.2
LVS10-2/F	351	619	150	125	40.6
LVS10-3/F	381	649	150	125	41.1
LVS10-4/F	427	745	164	127	48.5
LVS10-5/F	457	775	164	127	51.9
LVS10-6/F	487	805	164	127	52.5
LVS10-7/F	522	862	186	120	60.6
LVS10-8/F	552	892	186	120	62.1
LVS10-9/F	582	922	186	120	63.2
LVS10-10/F	612	952	186	120	66.5
LVS10-12/F	672	1012	186	120	73.1
LVS10-14/F	764	1161	210	142	77.1
LVS10-16/F	824	1221	210	142	80.3
LVS10-18/F	884	1281	210	142	86.9
LVS10-20/F	944	1341	210	142	86.9
LVS10-22/F	1004	1401	210	142	95.6

Vue éclatée

No.	Туре	Matériaux
1	base	fonte HT200
2	bouchon de vidange	inox AISI 304
3	boîte à eau inférieure	ZG304
4	diffuseur	inox AISI 304
5	diffuseur avec palier	inox AISI 304
6	diffuseur intermédiaire	inox AISI 304
7	turbine	inox AISI 304
8	volute finale	inox AISI 304
9	bouchon de remplissage	fonte HT200
10	lanterne	fonte HT200
11	accouplement	
12	moteur	
13	carter protection d'accouplement	inox AISI 304
14	garniture mécanique cartouche	
15	bouchon de purge	inox AISI 304
16	fond de pompe	ZG304
17	arbre pompe	inox AISI 304
18	chemise	inox AISI 304
19	bride	acier moulé ZG35

